Sperm Track Settings
 
Sperm

Maximum display mode:       Reset to defaults   
Select dataType (Help):
hypomethylated regions       methylation level ▾       coverage ▾       allelic score ▾       allele specific methylated regions      
Select subtracks by celltype:
Celltype
Gorilla Sperm
Dog Sperm
Human Sperm
Chimp Sperm
Rat Sperm
Rhesus Sperm
Human Sperm
List subtracks: only selected/visible    all    ()
  Celltype↓1 Publication↓2 dataType↓3   Track Name↓4  
hide
 Gorilla Sperm  Qu-Mammal-2017  hypomethylated regions  Evolutionary Expansion of DNA Hypomethylation in the Mammalian Germline Genome : 05.Gorilla_Sperm_HMR   Data format 
hide
 Configure
 Gorilla Sperm  Qu-Mammal-2017  methylation level  Evolutionary Expansion of DNA Hypomethylation in the Mammalian Germline Genome : 05.Gorilla_Sperm_Meth   Data format 
hide
 Configure
 Gorilla Sperm  Qu-Mammal-2017  coverage  Evolutionary Expansion of DNA Hypomethylation in the Mammalian Germline Genome : 05.Gorilla_Sperm_Read   Data format 
hide
 Dog Sperm  Qu-Mammal-2017  hypomethylated regions  Evolutionary Expansion of DNA Hypomethylation in the Mammalian Germline Genome : 13.Dog_Sperm_HMR   Data format 
hide
 Configure
 Dog Sperm  Qu-Mammal-2017  methylation level  Evolutionary Expansion of DNA Hypomethylation in the Mammalian Germline Genome : 13.Dog_Sperm_Meth   Data format 
hide
 Configure
 Dog Sperm  Qu-Mammal-2017  coverage  Evolutionary Expansion of DNA Hypomethylation in the Mammalian Germline Genome : 13.Dog_Sperm_Read   Data format 
hide
 Human Sperm  Hammoud-Human-2014  hypomethylated regions  Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. : Human_Sperm_HMR   Data format 
hide
 Configure
 Human Sperm  Hammoud-Human-2014  methylation level  Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. : Human_Sperm_Meth   Data format 
hide
 Configure
 Human Sperm  Hammoud-Human-2014  coverage  Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. : Human_Sperm_Read   Data format 
hide
 Human Sperm  Hammoud-Human-2014  allelic score  Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. : Human_Sperm_Allelic   Data format 
hide
 Chimp Sperm  Molaro-Sperm-2011  hypomethylated regions  Sperm Methylation Profiles of Human and Chimp, Molaro 2011 : Chimp_Sperm_HMR   Data format 
hide
 Configure
 Chimp Sperm  Molaro-Sperm-2011  methylation level  Sperm Methylation Profiles of Human and Chimp, Molaro 2011 : Chimp_Sperm_Meth   Data format 
hide
 Configure
 Chimp Sperm  Molaro-Sperm-2011  coverage  Sperm Methylation Profiles of Human and Chimp, Molaro 2011 : Chimp_Sperm_Read   Data format 
hide
 Chimp Sperm  Molaro-Sperm-2011  allele specific methylated regions  Sperm Methylation Profiles of Human and Chimp, Molaro 2011 : Chimp_Sperm_AMR   Data format 
hide
 Rat Sperm  Qu-Mammal-2017  hypomethylated regions  Evolutionary Expansion of DNA Hypomethylation in the Mammalian Germline Genome : 11.Rat_Sperm_HMR   Data format 
hide
 Configure
 Rat Sperm  Qu-Mammal-2017  methylation level  Evolutionary Expansion of DNA Hypomethylation in the Mammalian Germline Genome : 11.Rat_Sperm_Meth   Data format 
hide
 Configure
 Rat Sperm  Qu-Mammal-2017  coverage  Evolutionary Expansion of DNA Hypomethylation in the Mammalian Germline Genome : 11.Rat_Sperm_Read   Data format 
hide
 Rhesus Sperm  Gao-Rhesus-2017  hypomethylated regions  De novo DNA methylation during monkey pre-implantation embryogenesis. : Rhesus_Sperm_HMR   Data format 
hide
 Configure
 Rhesus Sperm  Gao-Rhesus-2017  methylation level  De novo DNA methylation during monkey pre-implantation embryogenesis. : Rhesus_Sperm_Meth   Data format 
hide
 Configure
 Rhesus Sperm  Gao-Rhesus-2017  coverage  De novo DNA methylation during monkey pre-implantation embryogenesis. : Rhesus_Sperm_Read   Data format 
hide
 Human Sperm  Molaro-Sperm-2011  hypomethylated regions  Sperm Methylation Profiles of Human and Chimp, Molaro 2011 : Human_Sperm_HMR   Data format 
hide
 Configure
 Human Sperm  Molaro-Sperm-2011  methylation level  Sperm Methylation Profiles of Human and Chimp, Molaro 2011 : Human_Sperm_Meth   Data format 
hide
 Configure
 Human Sperm  Molaro-Sperm-2011  coverage  Sperm Methylation Profiles of Human and Chimp, Molaro 2011 : Human_Sperm_Read   Data format 
hide
 Human Sperm  Molaro-Sperm-2011  allele specific methylated regions  Sperm Methylation Profiles of Human and Chimp, Molaro 2011 : Human_Sperm_AMR   Data format 
    
Assembly: Human Feb. 2009 (GRCh37/hg19)

Sperm

Description

Sample BS rate* Methylation Coverage %CpGs #HMR #AMR #PMD
Human_Sperm Mature sperm cells from two donors WGBS 0.997 0.776 51.818 0.959 84111 0 0 Download
Human_Sperm 1.000 0.709 17.033 0.960 84906 9363 0 Download
Chimp_Sperm 0.988 0.671 14.041 0.983 64130 4241 0 Download
Gorilla_Sperm Mature sperm cells (Ivan) WGBS 0.000 0.000 0.000 0.000 63384 0 0 Download
Rat_Sperm Mature sperm cells from 2 individuals WGBS 0.000 0.000 0.000 0.000 53674 0 0 Download
Dog_Sperm Mature sperm cells from 3 individuals WGBS 0.000 0.000 0.000 0.000 46552 0 0 Download
Rhesus_Sperm T-WGBS for rhesus monkey sperm WGBS 0.000 0.000 0.000 0.000 48170 0 0 Download

* see Methods section for how the bisulfite conversion rate is calculated

Terms of use: If you use this resource, please cite us! The Smith Lab at USC has developed and is owner of all analyses and associated browser tracks from the MethBase database (e.g. tracks displayed in the "DNA Methylation" trackhub on the UCSC Genome Browser). Any derivative work or use of the MethBase resource that appears in published literature must cite the most recent publication associated with Methbase (see "References" below). Users who wish to copy the contents of MethBase in bulk into a publicly available resource must additionally have explicit permission from the Smith Lab to do so. We hope the MethBase resource can help you!

Display Conventions and Configuration

The various types of tracks associated with a methylome follow the display conventions below. Green intervals represent partially methylated region; Blue intervals represent hypo-methylated regions; Yellow bars represent methylation levels; Black bars represent depth of coverage; Purple intervals represent allele-specific methylated regions; Purple bars represent allele-specific methylation score; and red intervals represent hyper-methylated regions.

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline MethPipe developed in the Smith lab at USC.

Mapping bisulfite treated reads: Bisulfite treated reads are mapped to the genomes with the rmapbs program (rmapbs-pe for pair-end reads), one of the wildcard based mappers. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. Uniquely mapped reads with mismatches below given threshold are kept. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is clipped. After mapping, we use the program duplicate-remover to randomly select one from multiple reads mapped exactly to the same location.

Estimating methylation levels: After reads are mapped and filtered, the methcounts program is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (containing C's) and the number of unmethylated reads (containing T's) at each cytosine site. The methylation level of that cytosine is estimated with the ratio of methylated to total reads covering that cytosine. For cytosines within the symmetric CpG sequence context, reads from the both strands are used to give a single estimate.

Estimating bisulfite conversion rate: Bisulfite conversion rate is estimated with the bsrate program by computing the fraction of successfully converted reads (read out as Ts) among all reads mapped to presumably unmethylated cytosine sites, for example, spike-in lambda DNA, chroloplast DNA or non-CpG cytosines in mammalian genomes.

Identifying hypo-methylated regions: In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically more interesting. These are called hypo-methylated regions (HMR). To identify the HMRs, we use the hmr which implements a hidden Markov model (HMM) approach taking into account both coverage and methylation level information.

Identifying hyper-methylated regions: Hyper-methylated regions (HyperMR) are of interest in plant methylomes, invertebrate methylomes and other methylomes showing "mosaic methylation" pattern. We identify HyperMRs with the hmr_plant program for those samples showing "mosaic methylation" pattern.

Identifying partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Identifying allele-specific methylated regions: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelicmeth is used to allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the reference by Song et al. For instructions on how to use MethPipe, you may obtain the MethPipe Manual.

Credits

The raw data were produced by Molaro A et al, Hammoud SS et al, Gao F et al. The data analysis were performed by members of the Smith lab.

Contact: Benjamin Decato and Liz Ji

Terms of Use

If you use this resource, please cite us! The Smith Lab at USC has developed and is owner of all analyses and associated browser tracks from the MethBase database (e.g. tracks displayed in the "DNA Methylation" trackhub on the UCSC Genome Browser). Any derivative work or use of the MethBase resource that appears in published literature must cite the most recent publication associated with Methbase (see "References" below). Users who wish to copy the contents of MethBase in bulk into a publicly available resource must additionally have explicit permission from the Smith Lab to do so. We hope the MethBase resource can help you!

References

MethPipe and MethBase

Song Q, Decato B, Hong E, Zhou M, Fang F, Qu J, Garvin T, Kessler M, Zhou J, Smith AD (2013) A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLOS ONE 8(12): e81148

Data sources

Molaro A, Hodges E, Fang F, Song Q, McCombie WR, Hannon GJ, Smith AD Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell. 2011 146(6):1029-41

Hammoud SS, Low DH, Yi C, Carrell DT, Guccione E, Cairns BR Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell. 2014 15(2):239-53

Gao F, Niu Y, Sun YE, Lu H, Chen Y, Li S, Kang Y, Luo Y, Si C, Yu J, et al De novo DNA methylation during monkey pre-implantation embryogenesis. Cell Res.. 2017 27(4):526-539