Gene interactions and pathways from curated databases and text-mining
Diabetes 2007, PMID: 17259394

High glucose, high insulin, and their combination rapidly induce laminin-beta1 synthesis by regulation of mRNA translation in renal epithelial cells.

Mariappan, Meenalakshmi M; Feliers, Denis; Mummidi, Srinivas; Choudhury, Goutam Ghosh; Kasinath, Balakuntalam S

Laminin is a glycoprotein that contributes to renal extracellular matrix expansion in diabetes. We investigated regulation of laminin-beta1 synthesis in murine renal proximal tubular epithelial cells by 30 mmol/l glucose (high glucose), 1 nmol/l insulin (high insulin), and their combination (high glucose+high insulin), simulating conditions observed during progression of type 2 diabetes. Compared with 5 mmol/l glucose and no insulin (control), high glucose alone, high insulin alone, or high glucose+high insulin together increased laminin-beta1 chain protein synthesis within 5 min, lasting for up to 60 min with no change in laminin-beta1 mRNA levels. Cycloheximide, but not actinomycin-D, abrogated increased laminin-beta1 synthesis. High glucose, high insulin, and high glucose+high insulin stimulated phosphorylation of 4E-BP1, a repressor binding protein for eukaryotic initiation factor 4E (eIF4E), that was dependent on activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin. High glucose, high insulin, and high glucose+high insulin also promoted release of eIF4E from 4E-BP1, phosphorylation of eIF4E, and increase in eIF4E association with eIF4G, critical events in the initiation phase of mRNA translation. High glucose, high insulin, and high glucose+high insulin increased Erk phosphorylation, which is an upstream regulator of eIF4E phosphorylation, and PD098059, which is a MEK inhibitor that blocks Erk activation, abolished laminin-beta1 synthesis. This is the first demonstration of rapid increment in laminin-beta1 synthesis by regulation of its mRNA translation by cells exposed to high glucose, high insulin, or high glucose+high insulin.

Document information provided by NCBI PubMed

Text Mining Data

insulin → laminin-beta1: " High glucose, high insulin , and their combination rapidly induce laminin-beta1 synthesis by regulation of mRNA translation in renal epithelial cells "

laminin-beta1 → insulin: " Compared with 5 mmol/l glucose and no insulin ( control ), high glucose alone, high insulin alone, or high glucose+high insulin together increased laminin-beta1 chain protein synthesis within 5 min, lasting for up to 60 min with no change in laminin-beta1 mRNA levels "

4E-BP1 → insulin: " High glucose, high insulin , and high glucose+high insulin stimulated phosphorylation of 4E-BP1 , a repressor binding protein for eukaryotic initiation factor 4E (eIF4E), that was dependent on activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin "

eIF4E → insulin: " High glucose, high insulin , and high glucose+high insulin also promoted release of eIF4E from 4E-BP1, phosphorylation of eIF4E, and increase in eIF4E association with eIF4G, critical events in the initiation phase of mRNA translation "

eIF4E → insulin: " High glucose, high insulin, and high glucose+high insulin increased Erk phosphorylation, which is an upstream regulator of eIF4E phosphorylation, and PD098059, which is a MEK inhibitor that blocks Erk activation, abolished laminin-beta1 synthesis "

Erk → insulin: " High glucose, high insulin , and high glucose+high insulin increased Erk phosphorylation, which is an upstream regulator of eIF4E phosphorylation, and PD098059, which is a MEK inhibitor that blocks Erk activation, abolished laminin-beta1 synthesis "

Manually curated Databases

No curated data.