Gene interactions and pathways from curated databases and text-mining
Oncogene 2004, PMID: 15021909

c-Myc represses the proximal promoters of GADD45a and GADD153 by a post-RNA polymerase II recruitment mechanism.

Barsyte-Lovejoy, Dalia; Mao, Daniel Y L; Penn, Linda Z

The c-Myc cellular oncogene has diverse activities, including transformation, proliferation, and apoptosis. These activities are dependent on the ability of c-Myc to regulate gene transcription. c-Myc downregulates the GADD45a and GADD153 (DDTI3) genes that are induced in response to genotoxic stresses and that encode protein products with antiproliferative activities. We show that c-Myc represses the expression of GADD45a and GADD153 in response to thapsigargin, a nongenotoxic stress, as well as other endoplasmic reticulum (ER) stress agents. c-Myc represses both the basal expression and the magnitude of ER stress induction of GADD gene transcription. This repression requires the minimal promoter region of GADD45a and GADD153 and is not dependent on the ER stress element or p53-binding sites in the regulatory regions of these genes. Further analysis by chromatin immunoprecipitation shows that c-Myc binds to the minimal promoter region of GADD45a and GADD153 in vivo. c-Myc-associated protein X (Max) is also bound to both GADD gene promoters, whereas c-Myc interacting zinc-finger protein 1 (Miz-1) is bound to the GADD153, but not GADD45a, promoter. RNA polymerase II (RNAPII) is recruited to the GADD gene promoters in the presence and absence of c-Myc, which suggests that c-Myc represses these genes through a post-RNAPII recruitment mechanism.

Document information provided by NCBI PubMed

Text Mining Data

Dashed line = No text mining data

Manually curated Databases

In total, 12 gene pairs are associated to this article in curated databases